Skip to main content

Advertisement

Log in

Interaction between gut microbiota and tumour chemotherapy

  • Review Article
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Chemotherapeutic drugs play an important role in the treatment of cancer, but the individual differences of patients' sensitivity to chemotherapeutic drugs and the drug resistance of chemotherapeutic drugs have always been a thorny problem in clinical treatment. In recent years, with the progress in research on human microbiota, gut microbiome plays an increasingly important role in the diagnosis and treatment of diseases. Studies have shown that gut microbiota can regulate the tumour microenvironment and affect the efficacy and toxicity of chemotherapy through a variety of mechanisms. This paper focuses on the specific mechanism that gut microbiota uses to influence chemotherapy and the potential therapeutic effect of supplementing with probiotics, to provide an important basis for individualised treatment strategies to be used when treating malignant tumours.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature. 2012;486(7402):207–14. https://doi.org/10.1038/nature11234.

    Article  CAS  Google Scholar 

  2. Sender R, Fuchs S, Milo R. Revised estimates for the number of human and bacteria cells in the body. PLoS Biol. 2016;14(8):e1002533. https://doi.org/10.1371/journal.pbio.1002533.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Chow J, Tang H, Mazmanian SK. Pathobionts of the gastrointestinal microbiota and inflammatory disease. Curr Opin Immunol. 2011;23(4):473–80.

    Article  CAS  Google Scholar 

  4. Costello EK, Lauber CL, Hamady M, Fierer N, Gordon JI, Knight R. Bacterial community variation in human body habitats across space and time. Science. 2009;326(5960):1694–7.

    Article  CAS  Google Scholar 

  5. Zraik IM, Heß-Busch Y. Management von nebenwirkungen der chemotherapie und deren langzeitfolgen [management of chemotherapy side effects and their long-term sequelae]. Urologe A. 2021;60(7):862–71. https://doi.org/10.1007/s00120-021-01569-7.

    Article  PubMed  Google Scholar 

  6. Wallington M, et al. 30-day mortality after systemic anticancer treatment for breast and lung cancer in England: a population-based, observational study. Lancet Oncol. 2016;17:1203–16.

    Article  Google Scholar 

  7. Li H, He J, Jia W. The influence of gut microbiota on drug metabolism and toxicity. Expert Opin Drug Metab Toxicol. 2016;12:31–40.

    Article  Google Scholar 

  8. Feuerstadt P, Louie TJ, Lashner B, Wang EEL, Diao L, Bryant JA, Sims M, Kraft CS, Cohen SH, Berenson CS, et al. SER-109, an oral microbiome therapy for recurrent clostridioides difficile infection. N Engl J Med. 2022;386(3):220–9. https://doi.org/10.1056/NEJMoa2106516.

    Article  CAS  PubMed  Google Scholar 

  9. Bailly C. Irinotecan: 25 years of cancer treatment. Pharmacol Res. 2019;148: 104398. https://doi.org/10.1016/j.phrs.2019.104398.

    Article  CAS  PubMed  Google Scholar 

  10. Iida N, Dzutsev A, Stewart CA, et al. Commensal bacteria control cancer response to therapy by modulating the tumor microenvironment. Science. 2013;342(6161):967–70.

    Article  CAS  Google Scholar 

  11. Hofseth LJ, Hebert JR, Chanda A, et al. Early-onset colorectal cancer: initial clues and current views. Nat Rev Gastroenterol Hepatol. 2020;17(6):352–64. https://doi.org/10.1038/s41575-019-0253-4 (Epub 2020 Feb 21).

    Article  PubMed  Google Scholar 

  12. Lin XB, Dieleman LA, Ketabi A, Bibova I, Sawyer MB, Xue H, et al. Irinotecan (CPT-11) chemotherapy alters intestinal microbiota in tumour bearing rats. PLoS ONE. 2012;7:e39764. https://doi.org/10.1371/journal.pone.0039764.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wang L, Wang R, Wei GY, Wang SM, Du GH. Dihydrotanshinone attenuates chemotherapy-induced intestinal mucositis and alters fecal microbiota in mice. Biomed Pharmacother. 2020;128: 110262. https://doi.org/10.1016/j.biopha.2020.110262.

    Article  CAS  PubMed  Google Scholar 

  14. Lian Q, Xu J, Yan S, Huang M, et al. Chemotherapy-induced intestinal inflammatory responses are mediated by exosome secretion of double-strand DNA via AIM2 inflammasome activation. Cell Res. 2017;27(6):784–800. https://doi.org/10.1038/cr.2017.54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Stringer AM. Interaction between host cells and microbes in chemotherapy-induced mucositis. Nutrients. 2013;5:1488–99. https://doi.org/10.3390/nu5051488.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ma Y, Peng X, Yang J, Giovanni V, Wang C. Impacts of functional oligosaccharide on intestinal immune modulation in immunosuppressive mice. Saudi J Biol Sci. 2020;27(1):233–41. https://doi.org/10.1016/j.sjbs.2019.08.019 (Epub 2019 Aug 27).

    Article  CAS  PubMed  Google Scholar 

  17. Logan RM, Stringer AM, Bowen JM, et al. The role of pro-inflammatory cytokines in cancer treatment-induced alimentary tract mucositis: pathobiology, animal models and cytotoxic drugs. Cancer Treat Rev. 2007;33(5):448–60. https://doi.org/10.1016/j.ctrv.2007.03.001.

    Article  CAS  PubMed  Google Scholar 

  18. Frosali S, Pagliari D, Gambassi G, et al. How the intricate interaction among toll-like receptors, microbiota, and intestinal immunity can influence gastrointestinal pathology. J Immunol Res. 2015;2015: 489821.

    Article  Google Scholar 

  19. Xie Y, Hu F, Xiang D, Lu H, Li W, Zhao A, Huang L, Wang R. The metabolic effect of gut microbiota on drugs. Drug Metab Rev. 2020;52(1):139–56. https://doi.org/10.1080/03602532.2020.1718691.

    Article  CAS  PubMed  Google Scholar 

  20. Ervin SM, Ramanan SV, Bhatt AP. Relationship between the gut microbiome and systemic chemotherapy. Dig Dis Sci. 2020;65:874–84. https://doi.org/10.1007/s10620-020-06119-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gallotti B, Galvao I, Leles G, Quintanilha MF, Souza RO, Miranda VC, et al. Effects of dietary fibre intake in chemotherapy-induced mucositis in murine model. Br J Nutr. 2020;126:853–64. https://doi.org/10.1017/S0007114520004924.

    Article  CAS  PubMed  Google Scholar 

  22. Cani PD, Jordan BF. Gut microbiota-mediated inflammation in obesity: a link with gastrointestinal cancer. Nat Rev Gastroenterol Hepatol. 2018;15:671–82. https://doi.org/10.1038/s41575-018-0025-6.

    Article  CAS  PubMed  Google Scholar 

  23. Morkunas E, Skieceviciene J, Kupcinskas J. The impact of modulating the gastrointestinal microbiota in cancer patients. Best Pract Res Clin Gastroenterol. 2020;48–49: 101700. https://doi.org/10.1016/j.bpg.2020.101700).

    Article  PubMed  Google Scholar 

  24. Markowiak-Kopeć P, Śliżewska K. The effect of probiotics on the production of short-chain fatty acids by human intestinal microbiome. Nutrients. 2020;12(4):1107. https://doi.org/10.3390/nu12041107.

    Article  CAS  PubMed Central  Google Scholar 

  25. Pollet RM, D’Agostino EH, Walton WG, Xu Y, Little MS, Biernat KA, et al. An atlas of beta-glucuronidases in the human intestinal microbiome. Structure. 2017;25:967–77. https://doi.org/10.1016/j.str.2017.05.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Creekmore BC, Gray JH, Walton WG, Biernat KA, Little MS, Xu Y, et al. Mouse gut microbiome-encoded beta-glucuronidases identified using metagenome analysis guided by protein structure. mSystems. 2019;4:00452–519. https://doi.org/10.1128/mSystems.00452-19.

    Article  Google Scholar 

  27. Wallace BD, Roberts AB, Pollet RM, Ingle JD, Biernat KA, Pellock SJ, et al. Structure and inhibition of microbiome beta-glucuronidases essential to the alleviation of cancer drug toxicity. Chem Biol. 2015;22:1238–49. https://doi.org/10.1016/j.chembiol.2015.08.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Forsgård RA, Marrachelli VG, et al. Chemotherapy-induced gastrointestinal toxicity is associated with changes in serum and urine metabolome and fecal microbiota in male Sprague-Dawley rats. Cancer Chemother Pharmacol. 2017;80(2):317–32. https://doi.org/10.1007/s00280-017-3364-z (Epub 2017 Jun 23).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Manhart N, Vierlinger K, Spittler A, Bergut Microbiotaeister H, Sautner T, Roth E. Oral feeding with glutamine prevents lymphocyte and glutathione depletion of Peyer’s patches in endotoxemic mice. Ann Surg. 2001;234(1):92–7. https://doi.org/10.1097/00000658-200107000-00014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bowen JM, Stringer AM, Gibson RJ, Yeoh AS, Hannam S, Keefe DM. VSL#3 probiotic treatment reduces chemotherapy-induced diarrhea and weight loss. Cancer Biol Ther. 2007;6:1449–54. https://doi.org/10.4161/cbt.6.9.4622.

    Article  PubMed  Google Scholar 

  31. Sistigu A, Viaud S, Chaput N, Bracci L, Proietti E, Zitvogel L. Immunomodulatory effects of cyclophosphamide and implementations for vaccine design. Semin Immunopathol. 2011;33(4):369–83. https://doi.org/10.1007/s00281-011-0245-0.

    Article  CAS  PubMed  Google Scholar 

  32. Ghiringhelli F, Larmonier N, Schmitt E, Parcellier A, Cathelin D, Garrido C, Chauffert B, Solary E, Bonnotte B, Martin F. CD4+CD25+ regulatory T cells suppress tumor immunity but are sensitive to cyclophosphamide which allows immunotherapy of established tumors to be curative. Eur J Immunol. 2004;34(2):336–44. https://doi.org/10.1002/eji.200324181.

    Article  CAS  PubMed  Google Scholar 

  33. Viaud S, Saccheri F, Mignot G, et al. Thcoccus hirae and Barnesiella intestinihominis facilitate cyclophosphamide-indcience. Science. 2013;342(6161):971–6. https://doi.org/10.1126/science.1240537.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Daillère R, Vétizou M, Waldschmitt N, Yamazaki T, et al. Enterococcus hirae and Barnesiella intestinihominis Facilitate Cyclophosphamide-Induced Therapeutic Immunomodulatory Effects. Immunity. 2016;45(4):931–943. https://doi.org/10.1016/j.immuni.2016.09.009.

    Article  CAS  PubMed  Google Scholar 

  35. Yang Y, Li W, Li Y, Wang Q, Gao L, Zhao JJ. Dietary Lycium barbarum polysaccharide induces Nrf2/ARE pathway and ameliorates insulin resistance induced by high-fat via activation of PI3K/AKT signaling. Oxidative Med Cell Longev. 2014;2014:145641–52. https://doi.org/10.1155/2014/145641.

    Article  CAS  Google Scholar 

  36. Puertollano MA, Puertollano E, Cienfuegos GAD, Pablo MAD. Dietary antioxidants: immunity and host defense. Curr Top Med Chem. 2011;11:1752–66. https://doi.org/10.2174/156802611796235107.

    Article  CAS  PubMed  Google Scholar 

  37. Hx A, Swa C, Cca B. Hypoglycemic polysaccharides from Auricularia auricula and Auricularia polytricha inhibit oxidative stress, NF-κB signaling and proinflammatory cytokine production in streptozotocin-induced diabetic mice - ScienceDirect. Food Sci Human Wellness. 2021;10(1):87–93. https://doi.org/10.1016/j.fshw.2020.06.001.

  38. Xu L, Mayila T, Wang J. Explore the effects of Fe3O4 nanoparticles and oxidative stress and neuroinflammatory responses on the gut microbiota based on a Parkinson rat model. J Nanosci Nanotechno. 2021;21:1176–83. https://doi.org/10.1166/JNN.2021.18636.

    Article  CAS  Google Scholar 

  39. García-González AP, Ritter AD, Shrestha S, Andersen EC, Yilmaz LS, Walhout AJM. Bacterial metabolism affects the C. elegans response to cancer chemotherapeutics. Cell. 2017;169(3):431–41. https://doi.org/10.1016/j.cell.2017.03.046.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Justino PF, Melo LF, Nogueira AF, Morais CM, Mendes WO, Franco AX, et al. Regulatory role of lactobacillus acidophilus on inflammation and gastric dysmotility in intestinal mucositis induced by 5-fluorouracil in mice. Cancer Chemother Pharmacol. 2015;75:559–67.

    Article  Google Scholar 

  41. Stringer AM, Gibson RJ, Bowen JM, Logan RM, Yeoh AS, Keefe DM. Chemotherapy-induced mucositis: the role of gastrointestinal microflora and mucins in the luminal environment. J Support Oncol. 2007;5:259–67.

    CAS  PubMed  Google Scholar 

  42. Hamouda N, Sano T, Oikawa Y, et al. Apoptosis, dysbiosis and expression of inflammatory cytokines are sequential events in the development of 5-fluorouracil-induced intestinal mucositis in mice. Basic Clin Pharmacol Toxicol. 2017;121(3):159–68. https://doi.org/10.1111/bcpt.12793.

    Article  CAS  PubMed  Google Scholar 

  43. Nomoto K, Yokokura T, Mitsuyama M, Yoshikai Y, Nomoto K. Prevention of indigenous infection of mice with Escherichia coli by nonspecifific immunostimulation. Antimicrob Agents Chemother. 1992;36(2):361–7.

    Article  CAS  Google Scholar 

  44. Rhee KJ, Sethupathi P, Driks A, Lanning DK, Knight KL. Role of commensal bacteria in development of gut-associated lymphoid tissues and preimmune antibody repertoire. J Immunol. 2004;172(2):1118–24.

    Article  CAS  Google Scholar 

  45. Gustafsson BE. The physiological importance of the colonic microflflora. Scand J Gastroenterol Suppl. 1982;77:117–31.

    CAS  PubMed  Google Scholar 

  46. Lyte M. Microbial endocrinology: an evolution-based shared mechanism determining microbiota’s influence on health and disease[J]. Else Kroner-Fresenius Symposia. 2013;4:53–8.

    Article  CAS  Google Scholar 

  47. Stringer AM, Gibson RJ, Logan RM, Bowen JM, Yeoh AS, Hamilton J, Keefe DM. Gastrointestinal microflora and mucins may play a critical role in the development of 5-Fluorouracil-induced gastrointestinal mucositis. Exp Biol Med (Maywood). 2009;234(4):430–41. https://doi.org/10.3181/0810-RM-301 (Epub 2009 Jan 28).

    Article  CAS  Google Scholar 

  48. Chen H, Xu C, Zhang F, et al. The gut microbiota attenuates muscle wasting by regulating energy metabolism in chemotherapy-induced malnutrition rats. Cancer Chemother Pharmacol. 2020;85(6):1049–62. https://doi.org/10.1007/s00280-020-04060-w (Epub 2020 May 15).

    Article  CAS  PubMed  Google Scholar 

  49. Siddik ZH. Cisplatin: mode of cytotoxic action and molecular basis of resistance. Oncogene. 2003;22:7265–79.

    Article  CAS  Google Scholar 

  50. Shen S, Lim G, et al. Gut microbiota is critical for the induction of chemotherapy-induced pain. Nat Neurosci. 2017;20(9):1213–6. https://doi.org/10.1038/nn.4606 (Epub 2017 Jul 17).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. He Y, Fu L, Li Y, et al. Gut microbial metabolites facilitate anticancer therapy efficacy by modulating cytotoxic CD8+ T cell immunity. Cell Metab. 2021;33(5):988-1000.e7. https://doi.org/10.1016/j.cmet.2021.03.002.

    Article  CAS  PubMed  Google Scholar 

  52. Gui QF, Lu HF, Zhang CX, Xu ZR, Yang YH. Well-balanced commensal microbiota contributes to anti-cancer response in a lung cancer mouse model. Genet Mol Res. 2015;14(2):5642–51. https://doi.org/10.4238/2015.May.25.16.

    Article  PubMed  Google Scholar 

  53. Lhchang LY, Ou CC. D-methionine alleviates cisplatin-induced mucositis by restoring the gut microbiota structure and improving intestinal inflammation. Ther Adv Med Oncol. 2019;11:1758835918821021. https://doi.org/10.1177/1758835918821021.

    Article  CAS  Google Scholar 

  54. Ren X, Lei L, Liu P, et al. Polysaccharide extracted from Enteromorpha ameliorates Cisplastin-induced small intestine injury in mice[J]. J Func Foods. 2018. https://doi.org/10.1016/j.jff.2018.08.023.

    Article  Google Scholar 

  55. Bingula R, Filaire M, Radosevic-Robin N, et al. Characterisation of gut, lung, and upper airways microbiota in patients with non-small cell lung carcinoma: study protocol for case-control observational trial. Medicine (Baltimore). 2018;97(50): e13676. https://doi.org/10.1097/MD.0000000000013676.

    Article  Google Scholar 

  56. Spferrone CR, Huttenhower C, et al. Potential role of intratumor bacteria in mediating tumor resistance to the chemotherapeutic drug gemcitabine. Science. 2017;357(6356):1156–60. https://doi.org/10.1126/science.aah5043.

    Article  CAS  Google Scholar 

  57. Panebianco C, Adamberg K, et al. Influence of gemcitabine chemotherapy on the microbiota of pancreatic cancer xenografted mice. Cancer Chemother Pharmacol. 2018;81(4):773–82. https://doi.org/10.1007/s00280-018-3549-0.

    Article  CAS  PubMed  Google Scholar 

  58. Kim C, Park J, Kim M. Gut microbiota-derived short-chain fatty acids, T cells, and inflammation. Immune Netw. 2014;14:277–88.

    Article  Google Scholar 

  59. Loman BR, Jordan KR, et al. Chemotherapy-induced neuroinflammation is associated with disrupted colonic and bacterial homeostasis in female mice. Sci Rep. 2019;9(1):16490. https://doi.org/10.1038/s41598-019-52893-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Su J, Li D, Chen Q, et al. Anti-breast cancer enhancement of a polysaccharide from spore of ganoderma lucidum with paclitaxel: suppression on tumor metabolism with gut microbiota reshaping. Front Microbiol. 2018;17(9):3099. https://doi.org/10.3389/fmicb.2018.03099.

    Article  Google Scholar 

  61. Chattopadhyay I, Nandi D, Nag A. The pint- sized powerhouse: illuminating the mighty role of the gut microbiome in improving the outcome of anti- cancer therapy. Semin Cancer Biol. 2021;70:98–111. https://doi.org/10.1016/j.semcancer.2020.07.012.

    Article  CAS  PubMed  Google Scholar 

  62. Yi Y, Shen L, Shi W, Xia F, Zhang H, et al. Gut microbiome components predict response to neoadjuvant chemoradiotherapy in patients with locally advanced rectal cancer: a prospective. Longitudinal Study Clin Cancer Res. 2021;27(5):1329–40. https://doi.org/10.1158/1078-0432.CCR-20-3445.

    Article  CAS  PubMed  Google Scholar 

  63. Zhou H, Suo J, Zhu J. Therapeutic relevance of human microbiota and lung cancer. Zhongguo Fei Ai Za Zhi. 2019;22(7):464–9. https://doi.org/10.3779/j.issn.1009-3419.2019.07.09.

    Article  PubMed  Google Scholar 

  64. Sivan A, Corrales L, Hubert N, et al. Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy. Science. 2015;350(6264):1084–9.

    Article  CAS  Google Scholar 

  65. Jacouton E, Chain F, Sokol H, Langella P, Bermudez- Humaran LG. Probiotic strain lactobacillus casei BL23 prevents colitis-associated colorectal cancer. Front Immunol. 2017;8:1553.

    Article  Google Scholar 

  66. Yazdi MH, Mahdavi M, Setayesh N, Esfandyar M, Shahverdi AR. Selenium nanoparticle-enriched Lactobacillus brevis causes more efficient immune responses in vivo and reduces the liver metastasis in metastatic form of mouse breast cancer. Daru. 2013;21(1):33.

    Article  CAS  Google Scholar 

  67. Aragón F, Carino S, Perdigón G, De MorenoDe LeBlanc A. The administration of milk fermented by the probiotic Lactobacillus casei CRL 431 exerts an immunomodulatory effect against a breast tumour in a mouse model. Immunobiology. 2014;219:457–64.

    Article  Google Scholar 

  68. Lakritz JR, Poutahidis T, Levkovich T, Varian BJ, Ibrahim YM, Chatzigiagkos A, et al. Beneficial bacteria stimulate host immune cells to counteract dietary and genetic predisposition to mammary cancer in mice. Int J Cancer. 2014;135:529–40.

    Article  CAS  Google Scholar 

  69. Stringer AM, Gibson RJ, Yeoh AS, Hannam S, Keefe DM. VSL#3 probiotic treatment reduces chemotherapy-induced diarrhea and weight loss. Cancer Biol Ther. 2007;6(9):1449–54.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Chen.

Ethics declarations

Conflict of interest

The authors declare that we do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

For this type of study formal consent is not required.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, L., Bai, Y., Xiang, L. et al. Interaction between gut microbiota and tumour chemotherapy. Clin Transl Oncol 24, 2330–2341 (2022). https://doi.org/10.1007/s12094-022-02919-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-022-02919-3

Keywords

Navigation